Multidisciplinar (Montevideo). 2025; 3:193

doi: 10.62486/agmu2025193

ISSN: 3046-4064

REVIEW

Review of the implications of oil dispersants on the environment, aquatic and human health

Revisión de las implicaciones en el ambiente, salud acuática y humana de los dispersantes del petróleo

Evelin Alexandra Zúñiga Sosa¹, Heidi Paola Sánchez Caicedo²

¹Pontificia Universidad Católica del Ecuador Sede Esmeraldas, Carrera de Laboratorio Clínico. Esmeraldas, Ecuador. ²Cruz Roja Ecuatoriana Junta Provincial Santo Domingo, Laboratorio Clínico. Santo Domingo de los Tsáchilas, Ecuador.

Cite as: Zúñiga Sosa EA, Sánchez Caicedo HP. Review of the implications of oil dispersants on the environment, aquatic and human health. Multidisciplinar (Montevideo). 2025; 3:193. https://doi.org/10.62486/agmu2025193

Submitted: 06-05-2024 Revised: 21-09-2024 Accepted: 17-04-2025 Published: 18-04-2025

Editor: Prof. Dr. Javier Gonzalez-Argote

Corresponding author: Evelin Alexandra Zúñiga Sosa 🖂

ABSTRACT

Introduction: oil spills pose a significant threat to ecosystems and human health. In Ecuador, multiple incidents have demonstrated the environmental and social consequences of these events, such as the recent spill in the Esmeraldas River in 2025, where chemical dispersants were used to contain the pollution. This study aimed to critically review the recent scientific literature on the types of dispersants used in oil spills, their mechanisms of action, and environmental and health effects.

Method: a qualitative methodology was applied through a bibliographic review of scientific and technical sources (2010-2025), prioritizing studies in tropical contexts or similar to Ecuador's. Research on the toxicity of dispersants, effects on aquatic organisms and humans, and their practical application in spills is included. **Results:** seven dispersants were identified: Corexit 9500, Finasol OSR 52, Superdispersant-25, Dasic Slickgone NS, F-50, SEACARE CITRUS, and HD 865 Plus. While some, such as SEACARE CITRUS and HD 865 Plus, are biodegradable and exhibit lower toxicity, others, such as Corexit 9500, have raised concerns about their adverse effects on marine fauna and exposed workers. Overall, the evidence shows that, although these compounds facilitate crude oil biodegradation, they can also affect the resilience of aquatic ecosystems and pose subclinical risks to humans.

Conclusions: it is urgent to conduct more research in Latin American contexts to assess the long-term risks of chemical dispersants. This information is key to guiding responsible decisions in environmental management and public health in the event of future spills.

Keywords: Oil Spill; Chemical Dispersants; Environmental Impact; Human Health; Aquatic Ecosystems.

RESUMEN

Introducción: los derrames de petróleo representan una amenaza significativa para los ecosistemas y la salud humana. En Ecuador, múltiples incidentes han demostrado las consecuencias ambientales y sociales de estos eventos, como el reciente derrame en el río Esmeraldas en 2025, donde se usaron dispersantes químicos para contener la contaminación. Este estudio tuvo como objetivo revisar críticamente la literatura científica reciente sobre los tipos de dispersantes utilizados en derrames petroleros, sus mecanismos de acción y efectos ambientales y sanitarios.

Método: se aplicó una metodología cualitativa mediante revisión bibliográfica de fuentes científicas y técnicas (2010-2025), priorizando estudios en contextos tropicales o similares al ecuatoriano. Se incluyen investigaciones sobre la toxicidad de dispersantes, efectos en organismos acuáticos y humanos, y su aplicación

© 2025; Los autores. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original sea correctamente citada

práctica en derrames.

Resultados: se identifican siete dispersantes: Corexit 9500, Finasol OSR 52, Superdispersante-25, Dasic Slickgone NS, F-50, SEACARE CITRUS y HD 865 Plus. Si bien algunos como SEACARE CITRUS y HD 865 Plus son biodegradables y presentan menor toxicidad, otros como Corexit 9500 han generado preocupación por sus efectos adversos en fauna marina y trabajadores expuestos. En general, la evidencia muestra que, aunque estos compuestos facilitan la biodegradación del crudo, también pueden afectar la resiliencia de ecosistemas acuáticos y representan riesgos subclínicos en humanos.

Conclusiones: se concluye que es urgente generar más investigación en contextos latinoamericanos para evaluar los riesgos a largo plazo de los dispersantes químicos. Esta información es clave para orientar las decisiones responsables en la gestión ambiental y la salud pública ante futuros derrames.

Palabras clave: Derrame de Petróleo; Dispersantes Químicos; Impacto Ambiental; Salud Humana; Ecosistemas Acuáticos.

INTRODUCTION

An oil spill is caused by the failure of oil pipes or conduits due to natural disasters or human actions. These types of incidents cause the pipes to rupture, resulting in an oil spill, which causes significant and, in many cases, irreparable damage to the environment. In these cases, the oil companies responsible for the extraction, production, or distribution of oil and its derivatives must bear the costs associated with repairing the affected pipelines, taking into account the technical evaluation of the damage, the necessary labor, and the clean-up work to mitigate the environmental impact, as well as the latent danger to the people living within their area of influence, as it impacts on their health, production systems and lifestyles.^(1,2)

In Ecuador, throughout history, there have been several cases of environmental disasters related to the oil industry, especially oil spills, which have seriously affected the environment and local communities, the most significant being:

- 1972-1992: During Texaco's operations in the Ecuadorian Amazon, multiple oil spills were recorded, including the spill of 16,2 million barrels of crude oil due to accidents in the Trans-Ecuadorian Pipeline. (3,4)
- 1987: An earthquake caused the rupture of the Trans-Ecuadorian Pipeline, spilling several million gallons of oil that contaminated the Napo River and reached Peru. (3)
 - 1989: A landslide caused the spill of 210 000 gallons of oil into the Napo River. (3)
- 2000-2008: 1,415 oil spills were recorded in Ecuador, according to data compiled by Acción Ecológica.⁽³⁾
- February 27, 2017: The rupture of a valve operated by the state oil company Petroecuador caused the spill of 20 barrels of oil at the Balao Maritime Terminal, forming a slick in the sea of approximately 3 km at Las Palmas beach. (5)
- April 7, 2020: The rupture of two oil pipelines and a polyduct in San Rafael, between Sucumbios and Orellana, caused the spill of 15,800 barrels of oil and fuel, contaminating 360 km of the Coca and Napo rivers. (3)
- July 19, 2023: Due to a failure in the relief system during the process of light crude oil reversion and line packaging from ships through the Esmeraldas terminal, a spill of around 1200 barrels of oil occurred from Balao, contaminating the waters of the Las Palmas tourist resort. (5,6)
- June 27, 2024: A pipe burst in block 16 in Orellana, which, after rainfall in the area, advanced as far as the Napo River. $^{(7)}$
- March 13, 2025: A landslide in Quinindé, Esmeraldas, caused the rupture of the Trans-Ecuadorian Pipeline System (SOTE), spilling 25,116 barrels of oil that affected rivers, mangroves and beaches. In the latter, as a measure to contain the oil spill, when it reached the mouth of the Esmeraldas River, the surface slick was treated by applying chemical dispersants sprayed by 21 vessels. These vessels also used the action of their propellers to generate turbulent currents, promoting the dispersion of the oil throughout the water column.^(8,9)

Oil dispersants are chemical substances that break down crude oil spilled in tiny droplets in water columns and can be applied to surface or subsurface oil in a situation close to an uncontrolled oil spill. (10,11) There are three main types:

1. First-generation dispersants: Introduced in the 1960s, these products were similar to industrial cleaners and degreasers, with high aquatic toxicity. Due to their negative environmental impacts, their use has been discontinued. They are hydrocarbon solvents that break oil into droplets but are highly toxic

3 Zúñiga Sosa EA, et al

and no longer widely used. (12)

- 2. Second-generation dispersants (Type I): designed to treat oil spills at sea by spraying from boats and containing hydrocarbon solvents with low or no aromatic content and between 15 % and 25 % surfactants, they are applied undiluted and require a high proportion of dosage (between 1:1 and 1:3 dispersant to oil). Although less toxic than first-generation dispersants, they are less effective and can be more toxic than third-generation dispersants, which is why their use has declined in many countries. (13)
- 3. Third-generation dispersants: These are the most advanced, with formulations designed to be more effective and less harmful to the ecosystem because they are composed of mixtures of two or more surfactants combined with glycol and light petroleum distillate cartridges. The concentration of surfactants varies between $25\,\%$ and $65\,\%$, which is higher than in the products. $^{(13)}$

Using chemical dispersants to mitigate oil spills is a common practice aimed at minimizing the impact of crude oil on aquatic surfaces by promoting its dispersion in the water column. However, this strategy has raised significant concerns about its effects on the environment, aquatic health, biodiversity and the functionality of the ecosystem as a whole, because they are highly sensitive to changes in their physical, chemical and biological conditions, and oil spills significantly alter these factors, reducing habitat quality, the reproduction and survival of species and deteriorating essential ecological functions such as water purification and primary production^(14,15) and in human health, due to the fact that exposure to polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) obtained from crude oil and the influence of temperature and meteorological conditions, through inhalation and skin contact, has been shown to be associated with an increased likelihood of headache, dizziness, difficulty concentrating, numbness/tingling sensations, blurred vision, memory loss/confusion and neurological alterations^(16,17,18) and that, in the long term, they generate cardiovascular, respiratory, renal, hepatic and blood-borne conditions for cleaning workers and in local communities.^(19,20,21,22)

In this sense, given the lack of clear consensus and the limited availability of research in Latin American or tropical contexts, such as the recent case of the spill in the Esmeraldas River, it is essential to carry out a critical review of the literature published in recent years to identify the main types of dispersants used, their mechanisms of action, documented effects and identify knowledge gaps, providing a solid basis to guide future research about environmental management and public health decisions due to the exposure of components and the alteration of the intestinal microbiota, which raise relevant questions about the possible systemic and subclinical effects of prolonged or repeated exposure to these compounds. (23,24,25)

METHOD

This study was developed using a qualitative approach through a bibliographic review of the scientific and technical information literature in March and April 2025 in scientific databases such as Scopus, ScienceDirect, PubMed, and Google Scholar, as well as in technical documents from Ecuadorian government agencies such as the Ministry of the Environment, Water and Ecological Transition; Petroamazonas; Petroecuador. The search terms used were: "oil dispersants," "environmental impact of dispersants," "toxicity of dispersants," "human health and oil dispersants," "Ecuador and chemical dispersants," among others, combined with Boolean operators (AND, OR), including scientific articles, theses, technical reports and regulatory documents published between 2010 and 2025 with information on dispersants used in oil spills in locations similar to Ecuador and excluding those articles that did not present scientific evidence of the impact of dispersants or focused exclusively on land spills.

The information was analyzed qualitatively in a database and was grouped into three main categories: environmental impact, aquatic health, and human health.

RESULTS AND DISCUSSION

Chemical dispersants have become essential for responding to oil spills, particularly in aquatic environments. Their primary function is to break up oil slicks into smaller droplets, thus increasing the contact surface and facilitating biodegradation by native microorganisms. However, this apparent solution has significant ecological and health implications that must be rigorously evaluated due to the substantial toxic effects on marine organisms such as oysters, copepods, and fish. (26,27,28,29,30) Furthermore, studies on exposed workers revealed respiratory, skin, and eye irritation symptoms, pointing to possible occupational risks. (31,32) Combined exposure to oil and Corexit increased toxicity in fish up to 52 times compared to exposure to oil alone. (33)

For their part, Finasol OSR 52 and Superdispersante-25, authorized in Europe, have shown similar effectiveness in dispersing hydrocarbons but present lower toxicity compared to Corexit, particularly towards crustaceans. (34,35) However, there is no significant evidence regarding their chronic impact on marine and coastal ecosystems, which highlights the need for longitudinal studies.

Dasic Slickgone NS, another internationally approved dispersant, has been evaluated with mixed results.

ISSN: 3046-4064

Although it is considered less toxic than more aggressive alternatives, specific data on its long-term action in

coastal environments such as Esmeraldas are scarce. In vitro studies suggest some cytotoxicity in fish cell lines,

although at non-lethal levels. (33)

In Latin America, products such as F-50 and SEACARE CITRUS have gained notoriety due to their more environmentally friendly profile. F-50, based on surfactants, acts by reducing the viscosity of crude oil and favoring its dispersion without significantly affecting the immediate environment. (22) SEACARE CITRUS, formulated with biodegradable citrus extracts, represents a more ecological alternative. Its mechanical mode of action and low toxicity make it a candidate for sensitive ecosystems, although rigorous ecotoxicological studies that fully support its environmental safety are lacking. (23)

Finally, HD 865 Plus incorporates petrolyllic bacteria together with natural surfactants, which represents an evolution towards bio-enzymatic technologies and a bioremediation approach that aims to reduce adverse impacts on human health and marine biodiversity. (36) Although promising, this approach requires scientific validation under real spill conditions, particularly in tropical areas such as the Ecuadorian Pacific

Table 1. Oil dispersants and their impact on the environment, aquatic life and human health						
Dispersant	Description	Environmental impact	Impact on Aquatic Health	Impact on Human Health		
Corexit 9500 (29,30,31)	widely used in oil spills, especially during the	of oil on the surface of the water, but its use has raised concerns due to	Studies indicate toxicity in aquatic organisms, including invertebrates and fish. For example, it has been observed to inactivate certain aquatic viruses and negatively affect oysters and other shellfish.	respiratory, dermal and ocular irritation symptoms in workers exposed during		
Finasol OSR 52 (35,37)	response to oil spills, approved for use in	effectiveness in dispersing oil in marine environments; however,	Limited data available; some studies suggest that its toxicity is comparable to other dispersants, but more specific research is needed.	effects on human health have been reported, although information is		
Superdispersante-25	used in oil spill	indicate that it is less toxic than other dispersants such as Corexit 9527,		available; no significant adverse effects on humans have been documented to		
Dasic Slickgone NS	in the oil industry to control	it is effective in dispersing oil, but more research is	toxicity are limited;	Detailed information on human health effects is not available; caution is advised during handling.		
F-50 ⁽³⁸⁾	dispersant that can	of surfactants that allow 15 % spilled crude oil	No data have been found to indicate its use or effect on aquatic organisms related to oil dispersion.	been reported through		
SEACARE CITRUS (39)	non-toxic dispersant based on water and citrus extracts, designed to disperse hydrocarbons spilled in bodies of water such as streams, rivers and lakes. It	and non-toxic composition, it is expected to have a reduced environmental impact compared to chemical solvent-based dispersants. However, specific information on long-term effects is	available on its toxicity	been reported. However, as with any chemical		

5 Zúñiga Sosa EA, et al

HD 865 Plus (36)	Concentrated	Designed to be	The combination of N	lo significant adverse
			petrolyllic bacteria et	
	in hydrocarbon	toxic, suggesting a	and natural surfactants re	elated to its use have
			indicates an intention be	•
		•	to minimize adverse re	
			effects on aquatic st	
		on a case-by-case basis		when handling chemicals.
			the biodegradation of	
		conditions of the affected	hydrocarbons.	
	surfactants.	environment.		

CONCLUSIONS

The evidence suggests that, although dispersants are helpful in emergencies, their application should be evaluated in terms of the type of ecosystem affected, the toxicity of the product, the environmental conditions, and the possibility of using complementary strategies such as physical barriers or bioremediation. However, their use is not without consequences. Dispersants such as Corexit 9500 have proven highly effective. They are also significantly toxic for aquatic organisms and potentially hazardous to human health, especially when adequate safety protocols do not accompany their use. More recent alternatives, such as Finasol OSR 52, Superdispersant-25, and Dasic Slickgone NS, have relatively lower toxicity profiles, although there is still no conclusive evidence on their long-term effects. In the Latin American context, products such as F-50, SEACARE CITRUS, and HD 865 Plus offer more sustainable approaches, especially because they are based on biodegradable components and petrologic bacteria. However, the lack of ecotoxicological field studies limits the generalization of their benefits and calls for long-term studies.

Given the variety of products available and the heterogeneity of the ecosystems affected, it is necessary to adopt a precautionary approach based on verifiable scientific evidence when choosing a dispersant, considering its immediate chemical effectiveness and collateral effects on biodiversity and human health. It is also recommended to complement its use with integrated response strategies such as physical barriers, biological remediation, and post-event environmental surveillance, as a key opportunity to strengthen environmental and health monitoring systems in spill emergencies, which in turn drives national research into safer and more sustainable dispersion technologies, tailored to the ecological characteristics of Ecuadorian rivers and coasts that can minimize the short-term impact on aquatic and human health.

BIBLIOGRAPHICAL REFERENCES

- 1. Cavazos-Arroyo J, Pérez-Armendáriz B, Mauricio-Gutiérrez A. Afectaciones y consecuencias de los derrames de hidrocarburos en suelos agrícolas de Acatzingo, Puebla, México. Agricultura, sociedad y desarrollo. 2014 Nov;11.
- 2. Vizuete R, Lascano A, Moreno R. Análisis econométrico en la gravedad de un derrame petrolero y su contaminación ambiental. Caso de estudio: Campo Sacha Ecuador. Espacios. 2019 Jun 3;40.
- 3. Canal Chevron Corporation. Juicio Crudo: Perspectivas de Chevrón sobre fraude judicial en su contra en Ecuador [Internet]. Quito; 2025 [cited 2025 Apr 5]. Available from: https://www.juiciocrudo.com/articulo/petroecuador-24-anos-de-derrames-y-siniestros/1131
- 4. Baquero D. https://amazonwatch.org/es/news/2023/1106-abandoned-oil-mess-still-plagues-communities-in-the-ecuadorian-amazon?utm_source=chatgpt.com. 2023. El desastre del petróleo abandonado todavía afecta a las comunidades de la Amazonía ecuatoriana.
- 5. Orozco M. Segundo derrame de petróleo en la costa de Esmeraldas en seis años. https://www.primicias.ec/noticias/economia/derrame-esmeraldas-palmas-oceano/. 2023 Jul 21;
- 6. Guebara J. Informe de Monitoreo Ambiental del derrame de petróleo ocurrido el 19 de julio del 2023, a las 04h30, en el sector Balao, cantón Esmeraldas, provincia Esmeraldas. Esmeraldas; 2023 Jul.
- 7. EP Petroecuador. Evento ambiental ocurrido en el Bloque 16, en Orellana está controlado. Orellana; 2024 Jun.
- 8. OCHA. Ecuador: Emergencia por Derrame de Petróleo Informe de Situación N.º 1 (al 2 de abril de 2025) [Internet]. 2025 Apr. Available from: www.unocha.org

- 9. Secretaría Nacional de Gestión de Riesgos. SitRep No. 20 Contaminación Ambiental Esmeraldas. 2025 Apr.
- 10. United States Environmental Protection Agency. https://www-epa-gov.translate.goog/emergency-response/dispersants?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=sge#:~:text=Dispersants%2C%20 also%20called%20dispersing%20agents,from%20a%20well%20blowout%20source. 2024. Dispersantes.
- 11. Tehreem F. https://www.aquaquick2000.com/es/tipos-de-dispersantes-para-vertidos-de-petroleo/. 2024. Guía completa de tipos de dispersantes para vertidos de petróleo.
- 12. Tehreem F. https://www.aquaquick2000.com/es/ventajas-de-los-dispersantes/?utm_source=chatgpt.com. 2024. Ventajas y desventajas del uso de dispersantes para vertidos de petróleo.
 - 13. ITOPF. Mecanismo de dispersión y composición de los dispersantes. 2011.
- 14. González-Vega. Mariana, España-López J, Almeida-Albuja A. Impacto de los derrames de Petróleo en la Amazonía Ecuatoriana: El alcance y el impacto de los derrames de petróleo, la contaminación por petróleo y los subproductos de desechos tóxicos en los seres humanos y la salud ecológica desde 1972. 2021.
- 15. Barreto M, Giner S, Lentino M, Infante C, Pulido R, Arrocha A, et al. Efecto de los derrames de hidrocarburos en el ambiente Recomendaciones para su mitigación. 2022 Jan.
- 16. Krishnamurthy J, Engel LS, Wang L, Schwartz EG, Christenbury K, Kondrup B, et al. Neurological symptoms associated with oil spill response exposures: Results from the Deepwater Horizon Oil Spill Coast Guard Cohort Study. Environ Int. 2019 Oct;131:104963.
- 17. Bruinen de Bruin Y, Koistinen K, Kephalopoulos S, Geiss O, Tirendi S, Kotzias D. Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union. Environmental Science and Pollution Research. 2008 Jul 20;15(5):417-30.
- 18. Craig J. M, Richard K. K, Lawrence S. E, Mark R. S, Patricia A. S, Dale P. S. Respiratory, Dermal, and Eye Irritation Symptoms Associated with CorexitTM EC9527A/EC9500A following the Deepwater Horizon Oil Spill: Findings from the GuLF STUDY. Environ Health Perspect. 2017 Sep 22;125(9).
- 19. Owusu BA, Lim A, Intawong C, Rheanpumikankit S, Suksri S, Ingviya T. Haematological, renal, and hepatic function changes among Rayong oil spill clean-up workers: a longitudinal study. Int Arch Occup Environ Health. 2022 Sep 30;95(7):1481-9.
- 20. Rusiecki JA, Denic-Roberts H, Thomas DL, Collen J, Barrett J, Christenbury K, et al. Incidence of chronic respiratory conditions among oil spill responders: Five years of follow-up in the Deepwater Horizon Oil Spill Coast Guard Cohort study. Environ Res. 2022 Jan;203:111824.
- 21. Instituto Nacional del Cáncer. https://www.cancer.gov/espanol/cancer/causas-prevencion/riesgo/sustancias/benceno. 2015. Benceno.
- 22. Afshar-Mohajer N, Fox MA, Koehler K. The human health risk estimation of inhaled oil spill emissions with and without adding dispersant. Science of The Total Environment. 2019 Mar;654:924-32.
- 23. Jong Nam K, Bong-Soo K, Seong-Jae K, Carl E C. Effects of Crude Oil, Dispersant, and Oil-Dispersant Mixtures on Human Fecal Microbiota in an In Vitro Culture System. mBio. 2012 Nov;3(5).
- 24. Afshar-Mohajer N, Fox MA, Koehler K. The human health risk estimation of inhaled oil spill emissions with and without adding dispersant. Science of The Total Environment. 2019 Mar;654:924-32.
- 25. Techtmann SM, Santo Domingo J, Conmy R, Barron M. Impacts of dispersants on microbial communities and ecological systems. Appl Microbiol Biotechnol. 2023 Feb 17;107(4):1095-106.
- 26. Kujawinski EB, Kido Soule MC, Valentine DL, Boysen AK, Longnecker K, Redmond MC. Fate of Dispersants Associated with the Deepwater Horizon Oil Spill. Environ Sci Technol. 2011 Feb 15;45(4):1298-306.

7 Zúñiga Sosa EA, et al

- 27. Farooq U, Szczybelski A, Ferreira FC, Faria NT, Netzer R. A Novel Biosurfactant-Based Oil Spill Response Dispersant for Efficient Application under Temperate and Arctic Conditions. ACS Omega. 2024 Feb 27;9(8):9503-15.
- 28. Herazo-Navajas DE, Romero-Hernández A. Evaluation of a surfactant of natural origin as a dispersant in oil spills in seas. DYNA (Colombia). 2021 Jul 1;88(218):230-8.
- 29. Jasperse L, Levin M, Tsantiris K, Smolowitz R, Perkins C, Ward JE, et al. Comparative toxicity of Corexit® 9500, oil, and a Corexit®/oil mixture on the eastern oyster, Crassostrea virginica (Gmelin). Aquatic Toxicology. 2018 Oct;203:10-8.
- 30. Pham PH, Huang YJ, Chen C, Bols NC. Corexit 9500 Inactivates Two Enveloped Viruses of Aquatic Animals but Enhances the Infectivity of a Nonenveloped Fish Virus. Appl Environ Microbiol. 2014 Feb;80(3):1035-41.
- 31. Jasperse L, Levin M, Tsantiris K, Smolowitz R, Perkins C, Ward JE, et al. Comparative toxicity of Corexit® 9500, oil, and a Corexit®/oil mixture on the eastern oyster, Crassostrea virginica (Gmelin). Aquatic Toxicology. 2018 Oct;203:10-8.
 - 32. Celander MC. Cocktail effects on biomarker responses in fish. Aquatic Toxicology. 2011 Oct; 105(3-4):72-7.
- 33. Judson RS, Martin MT, Reif DM, Houck KA, Knudsen TB, Rotroff DM, et al. Analysis of eight oil spill dispersants using rapid, in vitro tests for endocrine and other biological activity. Environ Sci Technol. 2010 Aug 1;44(15):5979-85.
- 34. Academias Nacionales de Ciencias I y Medicina. The Use of Dispersants in Marine Oil Spill Response. Washington, D.C.: National Academies Press; 2020.
- 35. Barron MG, Bejarano AC, Conmy RN, Sundaravadivelu D, Meyer P. Toxicity of oil spill response agents and crude oils to five aquatic test species. Mar Pollut Bull. 2020 Apr;153:110954.
 - 36. HEFLIN S.A. https://www.heflinsa.com/productos. 2023. DISPERSANTE CONCENTRADO HD 865 PLUS.
- 37. United States Environmental Protection Agency. https://www.epa.gov/emergency-response/finasol-osr-52-ibc. 2025. FINASOL OSR 52 IBC.
 - 38. Atlas quimicos. F-50 Dispersante removedor de hidrocarburos. Quito; 2012.
 - 39. ROCHEM. Ficha Técnica Seacare Citr-2024-03-07-16-45-04 1. Guayaquil; 2025.

FINANCING

The authors did not receive any funding for the development of this research.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

CONTRIBUTION OF AUTHORSHIP

Conceptualization: Evelin Alexandra Zúñiga Sosa, Heidi Paola Sánchez Caicedo. Data curation: Evelin Alexandra Zúñiga Sosa, Heidi Paola Sánchez Caicedo.

Formal analysis: Evelin Alexandra Zúñiga Sosa.

Research: Evelin Alexandra Zúñiga Sosa, Heidi Paola Sánchez Caicedo.

Methodology: Evelin Alexandra Zúñiga Sosa.

Resources: Evelin Alexandra Zúñiga Sosa, Heidi Paola Sánchez Caicedo.

Validation: Evelin Alexandra Zúñiga Sosa. Visualization: Evelin Alexandra Zúñiga Sosa.

Writing - original draft: Evelin Alexandra Zúñiga Sosa, Heidi Paola Sánchez Caicedo.

Writing - revision and editing: Evelin Alexandra Zúñiga Sosa, Heidi Paola Sánchez Caicedo.