Active packaging technology: cassava starch/orange essential oil for antimicrobial food packaging

Authors

  • Olga Lucia Torres Vargas Universidad del Quindío, Quindío. Colombia Author
  • Iván Andrés Rodríguez Agredo Universidad del Quindío, Quindío. Colombia Author

DOI:

https://doi.org/10.62486/agmu2024102

Keywords:

orange essential oil, antimicrobial activity, starch films, physical properties

Abstract

New technologies for active food packaging that can protect and interact with the food, increasing its shelf life are currently being developed. Essential oils are active compounds that, in addition to providing antibacterial protection, can improve the functional and mechanical properties of films. This research aimed to evaluate the influence of orange (Citrus sinensis L.) essential oil (AEN) on the physical and antimicrobial properties of active films produced from cassava (Manihot esculenta) starch and alginate (AY/AG) using the plate diffusion technique. The films were formulated with different concentrations of AEN (0.0, 0.5, 1.0 and 1.5 %). Elongation at break (EB), water vapor permeability (WVP), moisture content, solubility and Luminosity (L*) decreased significantly (p < 0.05) with the addition of AEN, on the other hand, tensile strength (TS), b* value (tendency towards yellow) and opacity increased. Scanning electron microscopy (SEM) images showed a smooth, uniform appearance and continuous dispersion between cassava starch, alginate. The results obtained indicated that the incorporation of AEN presented an inhibitory effect against Escherichia coli and Staphylococcus aureus bacteria. Therefore, the films obtained have a high potential to be used in the development of antimicrobial packaging for food applications

References

Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in food science & technology, 48, 51- 62. DOI: https://doi.org/10.1016/j.tifs.2015.12.001

Aguiar, M.F. M.C.S. das Graças Fernandes da Silva, J.B. Fernandes, M.R. Forim. (2020), Evaluation of the microencapsulation of orange essential oil in biopolymers by using a spray–drying process. Sci. Rep., 10 pp. 1-11, 10.1038/s41598–020– 68823–4 DOI: https://doi.org/10.1038/s41598-020-68823-4

Calo, J. R., Crandall, P. G., O'Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems–A review. Food control, 54, 111-119. DOI: https://doi.org/10.1016/j.foodcont.2014.12.040

Chillo, S., Flores, S., (2008). Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile,

M. A. Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88(2), 159-168 DOI: https://doi.org/10.1016/j.jfoodeng.2008.02.002

Jafarzadeha, S.M. Jafarib, A. Salehabadia, A.M. Nafchia, U.S.U. Kumara, H.P.S.A. Khalila (2020). Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends in Food Science & Technology, 100, 262-277. DOI: https://doi.org/10.1016/j.tifs.2020.04.017

Jarine Amaral do Evangelho, Guilherme da Silva Dannenberg, Barbara Biduski, Shanise Lisie Mello el Halal, et al., (2019) Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil, Carbohydrate Polymers, Volume 222. https://doi.org/10.1016/j.carbpol.2019.114981. DOI: https://doi.org/10.1016/j.carbpol.2019.114981

Menzel, C. (2020). Improvement of starch films for food packaging through a three- principle approach: Antioxidants, cross-linking and reinforcement. Carbohydrate Polymers, 250, 116828. DOI: https://doi.org/10.1016/j.carbpol.2020.116828

Sadaf Nazir, Idrees Ahmed Wani, (2022). Development and characterization of an antimicrobial edible film from basil seed (Ocimum basilicum L.) mucilage and sodium alginate, Biocatalysis and Agricultural Biotechnology, Volume 44, https://doi.org/10.1016/j.bcab.2022.102450. DOI: https://doi.org/10.1016/j.bcab.2022.102450

Sahraee, S. Milani, J.M. Regenstein, J.M. Kafil, H.S. (2019). Protection of foods against oxidative deterioration using edible films and coatings: a review, Food Biosci. 32 https://doi.org/10.1016/j.fbio.2019.100451. DOI: https://doi.org/10.1016/j.fbio.2019.100451

Sharma, N., & Tripathi, A. (2008). Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem. Microbiological research, 163(3), 337-344. DOI: https://doi.org/10.1016/j.micres.2006.06.009

Silveira Júnior, V. A.S. Prata, F.de M. Ramos, V.Silveira Júnior, A.S. Prata (2021). Physical aspects of orange essential oil–contaning particles after vacuum spray drying processing. Food Chem. X., 12 (2021), p. 100142, 10.1016/j.fochx.2021.100142. DOI: https://doi.org/10.1016/j.fochx.2021.100142

Tan, W. Dong, F. Zhang, J. Zhao, X. Li, Q. Guo, Z. (2019). Physical and antioxidant properties of edible chitosan ascorbate films, J. Agric. Food Chem. 67 2530–2539. Torres, O. L., Galeano, Y. V., & Lema, M. (2021). Effect of incorporating extracts from natural pigments in alginate/starch films. Journal of Materials Research and DOI: https://doi.org/10.1021/acs.jafc.8b04567

Technology, 13, 2239-2250.

Valencia-Sullca. C.. Vargas. M.. Atarés. L.. & Chiralt. A. (2018). Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food hydrocolloids. 75. 107-115. DOI: https://doi.org/10.1016/j.foodhyd.2017.09.008

Yousuf, B., S. Wu , MW Siddiqui. (2021). Incorporación de aceites esenciales o compuestos derivados de ellos en recubrimientos comestibles: efecto sobre la calidad y vida útil de productos frescos/recién cortados. Tendencias en ciencia y tecnología de los alimentos, 108, págs . 245-257,10.1016/j.tifs.2021.01.016.

Zhu , Y., C. Li , H. Cui , L. Lin. (2021). Estrategias de encapsulación para mejorar las propiedades antibacterianas de los aceites esenciales en el sistema alimentario. Control de Alimentos,123 ( 2021 ) , pág. 107856 ,10.1016/j.foodcont.2020.107856

Ahmed, Md. W., Haque, Md. A., Mohibbullah, Md., Khan, Md. S. I., Islam, M. A., Mondal, Md. H. T., & Ahmmed, R. (2022). A review on active packaging for quality and safety of foods: Current trends, applications, prospects and challenges. Food Packaging and Shelf Life, 33, 100913. https://doi.org/10.1016/j.fpsl.2022.100913 DOI: https://doi.org/10.1016/j.fpsl.2022.100913

Alves, J., Gaspar, P. D., Lima, T. M., & Silva, P. D. (2023). What is the role of active packaging in the future of food sustainability? A systematic review. Journal of the Science of Food and Agriculture, 103(3), 1004–1020. https://doi.org/10.1002/jsfa.11880 DOI: https://doi.org/10.1002/jsfa.11880

Deshmukh, R. K., Hakim, L., & Gaikwad, K. K. (2023). Active Packaging Materials. Current Food Science and Technology Reports, 1(2), 123–132. https://doi.org/10.1007/s43555-023-00004-6 DOI: https://doi.org/10.1007/s43555-023-00004-6

Farousha, K., Tham, P. E., Chew, K. W., Amornraksa, S., & Show, P. L. (2023). The Future of Food Preservation: Active Packaging with Controlled Release Systems. E3S Web of Conferences, 428, 02009. https://doi.org/10.1051/e3sconf/202342802009 DOI: https://doi.org/10.1051/e3sconf/202342802009

Gaikwad, K. K., Singh, S., & Negi, Y. S. (2020). Ethylene scavengers for active packaging of fresh food produce. Environmental Chemistry Letters, 18(2), 269–284. https://doi.org/10.1007/s10311-019-00938-1 DOI: https://doi.org/10.1007/s10311-019-00938-1

Jacinto-Valderrama, R. A., Andrade, C. T., Pateiro, M., Lorenzo, J. M., & Conte-Junior, C. A. (2023). Recent Trends in Active Packaging Using Nanotechnology to Inhibit Oxidation and Microbiological Growth in Muscle Foods. Foods, 12(19), Article 19. https://doi.org/10.3390/foods12193662 DOI: https://doi.org/10.3390/foods12193662

Jafarzadeh, S., Hadidi, M., Forough, M., Nafchi, A. M., & Mousavi Khaneghah, A. (2023). The control of fungi and mycotoxins by food active packaging: A review. Critical Reviews in Food Science and Nutrition, 63(23), 6393–6411. https://doi.org/10.1080/10408398.2022.2031099 DOI: https://doi.org/10.1080/10408398.2022.2031099

Jha, P. (2020). Effect of grapefruit seed extract ratios on functional properties of corn starch-chitosan bionanocomposite films for active packaging. International Journal of Biological Macromolecules, 163, 1546–1556. https://doi.org/10.1016/j.ijbiomac.2020.07.251 DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.251

Just, D. R., & Goddard, J. M. (2023). Behavioral framing and consumer acceptance of new food technologies: Factors influencing consumer demand for active packaging. Agribusiness, 39(1), 3–27. https://doi.org/10.1002/agr.21778 DOI: https://doi.org/10.1002/agr.21778

Kuai, L., Liu, F., Chiou, B.-S., Avena-Bustillos, R. J., McHugh, T. H., & Zhong, F. (2021). Controlled release of antioxidants from active food packaging: A review. Food Hydrocolloids, 120, 106992. https://doi.org/10.1016/j.foodhyd.2021.106992 DOI: https://doi.org/10.1016/j.foodhyd.2021.106992

Kumar, S., & Thakur, K. S. (2020). Active packaging technology to retain storage quality of pear cv. “Bartlett” during shelf-life periods under ambient holding after periodic cold storage. Packaging Technology and Science, 33(7), 239–254. https://doi.org/10.1002/pts.2501 DOI: https://doi.org/10.1002/pts.2501

López-Gómez, A., Navarro-Martínez, A., Garre, A., Iguaz, A., & Martínez-Hernández, G. B. (2023). The Potential of Essential Oils from Active Packaging to Reduce Ethylene Biosynthesis in Plant Products. Part 2: Fruits (Blueberries and Blackberries). Plants, 12(19), Article 19. https://doi.org/10.3390/plants12193418 DOI: https://doi.org/10.3390/plants12193418

Monção, É. da C., Grisi, C. V. B., de Moura Fernandes, J., Souza, P. S., & de Souza, A. L. (2022). Active packaging for lipid foods and development challenges for marketing. Food Bioscience, 45, 101370. https://doi.org/10.1016/j.fbio.2021.101370 DOI: https://doi.org/10.1016/j.fbio.2021.101370

Nimitkeatkai, H., Techavuthiporn, C., Boonyaritthongchai, P., & Supapvanich, S. (2022). Commercial active packaging maintaining physicochemical qualities of carambola fruit during cold storage. Food Packaging and Shelf Life, 32, 100834. https://doi.org/10.1016/j.fpsl.2022.100834 DOI: https://doi.org/10.1016/j.fpsl.2022.100834

Pascuta, M. S., & Vodnar, D. C. (2022). Nanocarriers for Sustainable Active Packaging: An Overview during and Post COVID-19. Coatings, 12(1), Article 1. https://doi.org/10.3390/coatings12010102 DOI: https://doi.org/10.3390/coatings12010102

Qian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X., & Guo, M. (2021). A review of active packaging in bakery products: Applications and future trends. Trends in Food Science & Technology, 114, 459–471. https://doi.org/10.1016/j.tifs.2021.06.009 DOI: https://doi.org/10.1016/j.tifs.2021.06.009

Roopa, H., Panghal, A., Kumari, A., Chhikara, N., Sehgal, E., & Rawat, K. (2023). Active Packaging in Food Industry. In Novel Technologies in Food Science (pp. 375–404). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119776376.ch10 DOI: https://doi.org/10.1002/9781119776376.ch10

R. Westlake, J., W. Tran, M., Jiang, Y., Zhang, X., D. Burrows, A., & Xie, M. (2023). Biodegradable biopolymers for active packaging: Demand, development and directions. Sustainable Food Technology, 1(1), 50–72. https://doi.org/10.1039/D2FB00004K DOI: https://doi.org/10.1039/D2FB00004K

Singh, A. K., Ramakanth, D., Kumar, A., Lee, Y. S., & Gaikwad, K. K. (2021). Active packaging technologies for clean label food products: A review. Journal of Food Measurement and Characterization, 15(5), 4314–4324. https://doi.org/10.1007/s11694-021-01024-3 DOI: https://doi.org/10.1007/s11694-021-01024-3

Sirait, M. S., Warsiki, E., & Setyaningsih, D. (2021). Potential of red fruit oil (Pandanus conoideus Lam.) as an antioxidant active packaging: A review. IOP Conference Series: Earth and Environmental Science, 749(1), 012008. https://doi.org/10.1088/1755-1315/749/1/012008 DOI: https://doi.org/10.1088/1755-1315/749/1/012008

Soltani Firouz, M., Mohi-Alden, K., & Omid, M. (2021). A critical review on intelligent and active packaging in the food industry: Research and development. Food Research International, 141, 110113. https://doi.org/10.1016/j.foodres.2021.110113 DOI: https://doi.org/10.1016/j.foodres.2021.110113

Su, J., Luo, Y., Cao, Z., Wang, X., & Ge, X. (2024). Advances in loquat post-harvest preservation and the application of nanotechnology for its active packaging. Journal of Food Process Engineering, 47(1), e14507. https://doi.org/10.1111/jfpe.14507 DOI: https://doi.org/10.1111/jfpe.14507

Thirupathi Vasuki, M., Kadirvel, V., & Pejavara Narayana, G. (2023). Smart packaging—An overview of concepts and applications in various food industries. Food Bioengineering, 2(1), 25–41. https://doi.org/10.1002/fbe2.12038 DOI: https://doi.org/10.1002/fbe2.12038

Umair, M., Sultana, T., Xun, S., Jabbar, S., Riaz Rajoka, M. S., Albahi, A., Abid, M., Ranjha, M. M. A. N., El-Seedi, H. R., Xie, F., Khan, K. ur R., Liqing, Z., & Zhendan, H. (2023). Advances in the application of functional nanomaterial and cold plasma for the fresh-keeping active packaging of meat. Food Science & Nutrition, 11(10), 5753–5772. https://doi.org/10.1002/fsn3.3540 DOI: https://doi.org/10.1002/fsn3.3540

Westlake, J. R., Tran, M. W., Jiang, Y., Zhang, X., Burrows, A. D., & Xie, M. (2022). Biodegradable Active Packaging with Controlled Release: Principles, Progress, and Prospects. ACS Food Science & Technology, 2(8), 1166–1183. https://doi.org/10.1021/acsfoodscitech.2c00070 DOI: https://doi.org/10.1021/acsfoodscitech.2c00070

Published

2024-08-06

How to Cite

1.
Torres Vargas OL, Rodríguez Agredo IA. Active packaging technology: cassava starch/orange essential oil for antimicrobial food packaging. Multidisciplinar (Montevideo) [Internet]. 2024 Aug. 6 [cited 2025 Aug. 20];2:102. Available from: https://multidisciplinar.ageditor.uy/index.php/multidisciplinar/article/view/102