Bioremediation using genetically modified microorganisms for the degradation of environmental pollutants

Authors

  • José Lázaro Francés Mesa Facultad de Biología de la Universidad de La Habana. Microbiología y Virología, Cuba Author
  • Nayeris Brito Espinosa Facultad de Biología de la Universidad de La Habana. Bioquímica y Biología Molecular, Cuba Author

DOI:

https://doi.org/10.62486/agmu2025206

Keywords:

bioremediation, environmental contamination, microorganisms, biotechnology, genetic engineering

Abstract

Introduction: The study addressed the environmental problems caused by soil and water contamination due to the excessive use of agrochemicals and industrial wastes. It was pointed out that intensive agricultural production and population growth have increased the accumulation of pollutants, generating negative impacts on biodiversity and human health. In the face of this environmental crisis, remediation methods were explored, highlighting bioremediation as a sustainable and efficient strategy based on microorganisms for the elimination of pollutants.
Development: Different bioremediation strategies were analyzed, differentiating between in situ and ex situ techniques. Processes such as biospraying, biostimulation and bioaugmentation, which allow the degradation of contaminants through microbial activity, were described. In addition, the impact of biotechnology on bioremediation was discussed, highlighting the use of omics tools and the application of genetically modified microorganisms to improve the efficiency of these processes. It was emphasized that genetic engineering and genome editing have made it possible to optimize the metabolic capacities of bacteria and fungi to transform toxic substances into less hazardous compounds.
Conclusion: It was concluded that bioremediation represents a viable and ecological alternative for dealing with environmental contamination. However, its large-scale application still faces challenges, such as the regulation of genetically modified microorganisms and the need for more detailed studies on its long-term impact. The integration of new biotechnological technologies could optimize environmental remediation and ensure its sustainability in the future.

References

Apollon, W., Flores-Breceda, H., Méndez-Zamora, G., Gómez-Leyva, J. F., Luna-Maldonado, A. I., & Kamaraj, S.-K. (2022). Importance of genetically engineered microbes (GEMs) in bioremediation of environmental pollutants. En Omics for Environmental Engineering and Microbiology Systems (pp. 203–219). CRC Press. DOI: 10.1201/9781003247883-10 DOI: https://doi.org/10.1201/9781003247883-10

Aurand, E. R., Moon, T. S., Buan, N. R., Solomon, K. V., Köpke, M., & EBRC Technical Roadmapping Working Group. (2024). Addressing the climate crisis through engineering biology. Npj Climate Action, 3(1). https://doi.org/10.1038/s44168-023-00089-8 DOI: https://doi.org/10.1038/s44168-023-00089-8

Barooah, M., & Hazarika, D. J. (2022). Genome editing tools. En Omics for Environmental Engineering and Microbiology Systems (pp. 159–180). CRC Press. DOI: 10.1201/9781003247883-8 DOI: https://doi.org/10.1201/9781003247883-8

Debbarma, P., Sharma, R., Luthra, N., Pandey, S. C., & Singh, S. V. (2023). Microbial consortia and their application for environmental sustainability. En Advanced Microbial Techniques in Agriculture, Environment, and Health Management (pp. 205–222). Elsevier. DOI: https://doi.org/10.1016/B978-0-323-91643-1.00012-0 DOI: https://doi.org/10.1016/B978-0-323-91643-1.00012-0

El Asri, O., Fadlaoui, S., & Afilal, M. E. (2022). Applications of microbes in municipal solid waste treatment. En Environmental and Microbial Biotechnology (pp. 587–607). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-2225-0_21 DOI: https://doi.org/10.1007/978-981-16-2225-0_21

Gangola, S., Joshi, S., Bhandari, G., Bhatt, P., Kumar, S., & Pandey, S. C. (2023). Omics approaches to pesticide biodegradation for sustainable environment. En Advanced Microbial Techniques in Agriculture, Environment, and Health Management (pp. 191–203). Elsevier. https://doi.org/10.1016/B978-0-323-91643-1.00010-7 DOI: https://doi.org/10.1016/B978-0-323-91643-1.00010-7

Kaura, S., Mathur, A., & Kalra, A. (2023). Bacteria and pollutants. En Modern Approaches in Waste Bioremediation (pp. 339–364). Springer International Publishing. https://doi.org/10.1007/978-3-031-24086-7_16 DOI: https://doi.org/10.1007/978-3-031-24086-7_16

Khan, A., Sharma, R. S., Panthari, D., Kukreti, B., Singh, A. V., & Upadhayay, V. K. (2023). Bioremediation of heavy metals by soil-dwelling microbes: an environment survival approach. En Advanced Microbial Techniques in Agriculture, Environment, and Health Management (pp. 167–190). Elsevier. DOI: https://doi.org/10.1016/B978-0-323-91643-1.00002-8 DOI: https://doi.org/10.1016/B978-0-323-91643-1.00002-8

Naik, H. S., Sah, P. M., Dhage, S. B., Gite, S. G., & Raut, R. W. (2023). Nanotechnology for bioremediation of industrial wastewater treatment. En Modern Approaches in Waste Bioremediation (pp. 265–298). Springer International Publishing. https://doi.org/10.1007/978-3-031-24086-7_14 DOI: https://doi.org/10.1007/978-3-031-24086-7_14

Nath, D., Kumari, V., Laik, R., & Mukhopadhyay, R. (2023). Genetically engineered microorganisms. En Handbook of Microbial Biotechnology (pp. 345-367). Taylor & Francis. https://doi.org/10.1201/9781003247883-23 DOI: https://doi.org/10.1201/9781003247883-23

Mathew, J. T., Adetunji, C. O., Inobeme, A., Monday, M., Azeh, Y., Otori, A. A., Shaba, Mathew, J. T., Adetunji, C. O., Inobeme, A., Monday, M., Azeh, Y., Otori, A. A., Shaba, E. Y., Mamman, A., & Ezekiel, T. (2023). Removal of heavy metals using bio-remedial techniques. En Modern Approaches in Waste Bioremediation (pp. 117–130). Springer International Publishing. https://doi.org/10.1007/978-3-031-24086-7_6 DOI: https://doi.org/10.1007/978-3-031-24086-7_6

Paul, D., Kumar, S., Banskar, S., Mohapatra, B., Shouche, Y. S. (2019). MICROBIOLOGY OF AQUEOUS ENVIRONMENTS: INTERACTIONS, EFFECTS, AND HOMEOSTASIS. En Kumar Verma, D., MICROBIOLOGY FOR SUSTAINABLE AGRICULTURE, SOIL HEALTH, AND ENVIRONMENTAL PROTECTION (pp. 297-340). Apple Academic Press Inc. DOI: https://doi.org/10.1201/9781351247061-7

Patil, M. P., Jobanputra, A. H., Verma, D. K., Srivastaba, S., Dwividi, A., K. (2019). BIOREMEDIATION OF PESTICIDES: AN ECO-FRIENDLY APPROACH FOR A CLEAN ENVIRONMENT. MICROBIOLOGY OF AQUEOUS ENVIRONMENTS: INTERACTIONS, EFFECTS, AND HOMEOSTASIS. En Kumar Verma, D., MICROBIOLOGY FOR SUSTAINABLE AGRICULTURE, SOIL HEALTH, AND ENVIRONMENTAL PROTECTION (pp. 341-389). Apple Academic Press Inc. DOI: https://doi.org/10.1201/9781351247061-8

Patil, P., & Sarkar, A. (2022). Omics to field bioremediation. En Omics for Environmental Engineering and Microbiology Systems (pp. 1–17). CRC Press. DOI: 10.1201/9781003247883-1 DOI: https://doi.org/10.1201/9781003247883-1

Raj, A., & Kumar, A. (2022). Integrated omics approaches to understand and improve wastewater remediation. En Omics for Environmental Engineering and Microbiology Systems (pp. 113–142). CRC Press. DOI: 10.1201/9781003247883-6 DOI: https://doi.org/10.1201/9781003247883-6

Wani, A. K., Dhanjal, D. S., Akhtar, N., Chopra, C., Goyal, A., & Singh, R. (2022). Role of genomics, metagenomics, and other meta-omics approaches for expunging the environmental contaminants by bioremediation. En Omics for Environmental Engineering and Microbiology Systems (pp. 19–51). CRC Press. DOI: 10.1201/9781003247883-2. DOI: https://doi.org/10.1201/9781003247883-2

Downloads

Published

2025-01-30

How to Cite

1.
Francés Mesa JL, Brito Espinosa N. Bioremediation using genetically modified microorganisms for the degradation of environmental pollutants. Multidisciplinar (Montevideo) [Internet]. 2025 Jan. 30 [cited 2025 Mar. 12];3:206. Available from: https://multidisciplinar.ageditor.uy/index.php/multidisciplinar/article/view/206